Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1588, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949050

RESUMO

The median eminence (ME) is a circumventricular organ at the base of the brain that controls body homeostasis. Tanycytes are its specialized glial cells that constitute the ventricular walls and regulate different physiological states, however individual signaling pathways in these cells are incompletely understood. Here, we identify a functional tanycyte subpopulation that expresses key taste transduction genes including bitter taste receptors, the G protein gustducin and the gustatory ion channel TRPM5 (M5). M5 tanycytes have access to blood-borne cues via processes extended towards diaphragmed endothelial fenestrations in the ME and mediate bidirectional communication between the cerebrospinal fluid and blood. This subpopulation responds to metabolic signals including leptin and other hormonal cues and is transcriptionally reprogrammed upon fasting. Acute M5 tanycyte activation induces insulin secretion and acute diphtheria toxin-mediated M5 tanycyte depletion results in impaired glucose tolerance in diet-induced obese mice. We provide a cellular and molecular framework that defines how bitter taste cells in the ME integrate chemosensation with metabolism.


Assuntos
Papilas Gustativas , Paladar , Camundongos , Animais , Paladar/fisiologia , Encéfalo , Transdução de Sinais , Homeostase , Glucose
2.
Sci Transl Med ; 14(665): eabh2369, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36197968

RESUMO

The nitric oxide (NO) signaling pathway in hypothalamic neurons plays a key role in the regulation of the secretion of gonadotropin-releasing hormone (GnRH), which is crucial for reproduction. We hypothesized that a disruption of neuronal NO synthase (NOS1) activity underlies some forms of hypogonadotropic hypogonadism. Whole-exome sequencing was performed on a cohort of 341 probands with congenital hypogonadotropic hypogonadism to identify ultrarare variants in NOS1. The activity of the identified NOS1 mutant proteins was assessed by their ability to promote nitrite and cGMP production in vitro. In addition, physiological and pharmacological characterization was carried out in a Nos1-deficient mouse model. We identified five heterozygous NOS1 loss-of-function mutations in six probands with congenital hypogonadotropic hypogonadism (2%), who displayed additional phenotypes including anosmia, hearing loss, and intellectual disability. NOS1 was found to be transiently expressed by GnRH neurons in the nose of both humans and mice, and Nos1 deficiency in mice resulted in dose-dependent defects in sexual maturation as well as in olfaction, hearing, and cognition. The pharmacological inhibition of NO production in postnatal mice revealed a critical time window during which Nos1 activity shaped minipuberty and sexual maturation. Inhaled NO treatment at minipuberty rescued both reproductive and behavioral phenotypes in Nos1-deficient mice. In summary, lack of NOS1 activity led to GnRH deficiency associated with sensory and intellectual comorbidities in humans and mice. NO treatment during minipuberty reversed deficits in sexual maturation, olfaction, and cognition in Nos1 mutant mice, suggesting a potential therapy for humans with NO deficiency.


Assuntos
Hipogonadismo , Óxido Nítrico , Animais , Cognição , Hormônio Liberador de Gonadotropina/genética , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipogonadismo/complicações , Hipogonadismo/congênito , Hipogonadismo/genética , Camundongos , Proteínas Mutantes , Mutação/genética , Óxido Nítrico Sintase Tipo I/genética , Nitritos
3.
Science ; 377(6610): eabq4515, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36048943

RESUMO

At the present time, no viable treatment exists for cognitive and olfactory deficits in Down syndrome (DS). We show in a DS model (Ts65Dn mice) that these progressive nonreproductive neurological symptoms closely parallel a postpubertal decrease in hypothalamic as well as extrahypothalamic expression of a master molecule that controls reproduction-gonadotropin-releasing hormone (GnRH)-and appear related to an imbalance in a microRNA-gene network known to regulate GnRH neuron maturation together with altered hippocampal synaptic transmission. Epigenetic, cellular, chemogenetic, and pharmacological interventions that restore physiological GnRH levels abolish olfactory and cognitive defects in Ts65Dn mice, whereas pulsatile GnRH therapy improves cognition and brain connectivity in adult DS patients. GnRH thus plays a crucial role in olfaction and cognition, and pulsatile GnRH therapy holds promise to improve cognitive deficits in DS.


Assuntos
Cognição , Disfunção Cognitiva , Síndrome de Down , Hormônio Liberador de Gonadotropina , Transtornos do Olfato , Adulto , Animais , Cognição/efeitos dos fármacos , Cognição/fisiologia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Modelos Animais de Doenças , Síndrome de Down/complicações , Síndrome de Down/tratamento farmacológico , Síndrome de Down/psicologia , Feminino , Hormônio Liberador de Gonadotropina/farmacologia , Hormônio Liberador de Gonadotropina/fisiologia , Hormônio Liberador de Gonadotropina/uso terapêutico , Humanos , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Transtornos do Olfato/tratamento farmacológico , Transtornos do Olfato/etiologia , Transmissão Sináptica/efeitos dos fármacos , Adulto Jovem
4.
Cells ; 11(16)2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-36010658

RESUMO

Via activation of the cannabinoid type-1 (CB1) receptor, endogenous and exogenous cannabinoids modulate important biochemical and cellular processes in adipocytes. Several pieces of evidence suggest that alterations of mitochondrial physiology might be a possible mechanism underlying cannabinoids' effects on adipocyte biology. Many reports suggest the presence of CB1 receptor mRNA in both white and brown adipose tissue, but the detailed subcellular localization of CB1 protein in adipose cells has so far been scarcely addressed. In this study, we show the presence of the functional CB1 receptor at different subcellular locations of adipocytes from epididymal white adipose tissue (eWAT) depots. We observed that CB1 is located at different subcellular levels, including the plasma membrane and in close association with mitochondria (mtCB1). Functional analysis in tissue homogenates and isolated mitochondria allowed us to reveal that cannabinoids negatively regulate complex-I-dependent oxygen consumption in eWAT. This effect requires mtCB1 activation and consequent regulation of the intramitochondrial cAMP-PKA pathway. Thus, CB1 receptors are functionally present at the mitochondrial level in eWAT adipocytes, adding another possible mechanism for peripheral regulation of energy metabolism.


Assuntos
Adipócitos Brancos , Canabinoides , Adipócitos Brancos/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Canabinoides/metabolismo , Canabinoides/farmacologia , Mitocôndrias/metabolismo
5.
Nat Neurosci ; 24(12): 1660-1672, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795451

RESUMO

Neurons that produce gonadotropin-releasing hormone (GnRH), which control fertility, complete their nose-to-brain migration by birth. However, their function depends on integration within a complex neuroglial network during postnatal development. Here, we show that rodent GnRH neurons use a prostaglandin D2 receptor DP1 signaling mechanism during infancy to recruit newborn astrocytes that 'escort' them into adulthood, and that the impairment of postnatal hypothalamic gliogenesis markedly alters sexual maturation by preventing this recruitment, a process mimicked by the endocrine disruptor bisphenol A. Inhibition of DP1 signaling in the infantile preoptic region, where GnRH cell bodies reside, disrupts the correct wiring and firing of GnRH neurons, alters minipuberty or the first activation of the hypothalamic-pituitary-gonadal axis during infancy, and delays the timely acquisition of reproductive capacity. These findings uncover a previously unknown neuron-to-neural-progenitor communication pathway and demonstrate that postnatal astrogenesis is a basic component of a complex set of mechanisms used by the neuroendocrine brain to control sexual maturation.


Assuntos
Hormônio Liberador de Gonadotropina , Maturidade Sexual , Astrócitos/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Maturidade Sexual/fisiologia
6.
Neurobiol Dis ; 160: 105533, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34673149

RESUMO

Memory impairment is one of the disabling manifestations of multiple sclerosis (MS) possibly present from the early stages of the disease and for which there is no specific treatment. Hippocampal synaptic dysfunction and dendritic loss, associated with microglial activation, can underlie memory deficits, yet the molecular mechanisms driving such hippocampal neurodegeneration need to be elucidated. In early-stage experimental autoimmune encephalomyelitis (EAE) female mice, we assessed the expression level of molecules involved in microglia-neuron interactions within the dentate gyrus and found overexpression of genes of the complement pathway. Compared to sham immunized mice, the central element of the complement cascade, C3, showed the strongest and 10-fold upregulation, while there was no increase of downstream factors such as the terminal component C5. The combination of in situ hybridization with immunofluorescence showed that C3 transcripts were essentially produced by activated microglia. Pharmacological inhibition of C3 activity, by daily administration of rosmarinic acid, was sufficient to prevent early dendritic loss, microglia-mediated phagocytosis of synapses in the dentate gyrus, and memory impairment in EAE mice, while morphological markers of microglial activation were still observed. In line, when EAE was induced in C3 deficient mice (C3KO), dendrites and spines of the dentate gyrus as well as memory abilities were preserved. Altogether, these data highlight the central role of microglial C3 in early hippocampal neurodegeneration and memory impairment in EAE and, therefore, pave the way toward new neuroprotective strategies in MS to prevent cognitive deficit using complement inhibitors.


Assuntos
Complemento C3/metabolismo , Encefalomielite Autoimune Experimental/metabolismo , Hipocampo/metabolismo , Transtornos da Memória/metabolismo , Degeneração Neural/metabolismo , Animais , Cinamatos/farmacologia , Complemento C3/antagonistas & inibidores , Complemento C3/genética , Convertases de Complemento C3-C5/farmacologia , Dendritos/efeitos dos fármacos , Dendritos/metabolismo , Depsídeos/farmacologia , Encefalomielite Autoimune Experimental/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Transtornos da Memória/patologia , Camundongos , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , Molibdoferredoxina , Esclerose Múltipla/metabolismo , Esclerose Múltipla/patologia , Degeneração Neural/patologia , Fagocitose/efeitos dos fármacos , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Ácido Rosmarínico
7.
Neuroendocrinology ; 111(3): 249-262, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32299085

RESUMO

BACKGROUND: Kisspeptin (KP) neurons in the rostral periventricular region of the 3rd ventricle (RP3V) of female rodents mediate positive estrogen feedback to gonadotropin-releasing hormone neurons and, thus, play a fundamental role in the mid-cycle luteinizing hormone (LH) surge. The RP3V is sexually dimorphic, and male rodents with lower KP cell numbers are unable to mount estrogen-induced LH surges. OBJECTIVE: To find and characterize the homologous KP neurons in the human brain, we studied formalin-fixed post-mortem hypothalami. METHODS: Immunohistochemical techniques were used. RESULTS: The distribution of KP neurons in the rostral hypothalamus overlapped with distinct subdivisions of the paraventricular nucleus. The cell numbers decreased after menopause, indicating that estrogens positively regulate KP gene expression in the rostral hypothalamus in humans, similarly to several other species. Young adult women and men had similar cell numbers, as opposed to rodents reported to have more KP neurons in the RP3V of females. Human KP neurons differed from the homologous rodent cells as well, in that they were devoid of enkephalins, galanin and tyrosine hydroxylase. Further, they did not contain known KP neuron markers of the human infundibular nucleus, neurokinin B, substance P and cocaine- and amphetamine-regulated transcript, while they received afferent input from these KP neurons. CONCLUSIONS: The identification and positive estrogenic regulation of KP neurons in the human rostral hypothalamus challenge the long-held view that positive estrogen feedback may be restricted to the mediobasal part of the hypothalamus in primates and point to the need of further anatomical, molecular and functional studies of rostral hypothalamic KP neurons.


Assuntos
Estrogênios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Menopausa/metabolismo , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Autopsia , Feminino , Humanos , Imuno-Histoquímica , Masculino , Microscopia Confocal , Pessoa de Meia-Idade , Núcleo Hipotalâmico Paraventricular/citologia , Área Pré-Óptica/citologia , Adulto Jovem
8.
Front Neurosci ; 14: 598707, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33343288

RESUMO

Neurons co-synthesizing kisspeptin (KP), neurokinin B (NKB), and dynorphin ("KNDy neurons") in the hypothalamic arcuate/infundibular nucleus (INF) form a crucial component of the gonadotropin-releasing hormone (GnRH)/luteinizing hormone (LH) "pulse generator." The goal of our study was to characterize KP neuron distribution, neuropeptide phenotype and connectivity to GnRH cells in ovariectomized (OVX) dogs and cats with immunohistochemistry on formalin-fixed hypothalamic tissue sections. In both species, KP and NKB neurons occurred in the INF and the two cell populations overlapped substantially. Dynorphin was detected in large subsets of canine KP (56%) and NKB (37%) cells and feline KP (64%) and NKB (57%) cells; triple-labeled ("KNDy") somata formed ∼25% of all immunolabeled neurons. Substance P (SP) was present in 20% of KP and 29% of NKB neurons in OVX cats but not dogs, although 26% of KP and 24% of NKB neurons in a gonadally intact male dog also contained SP signal. Only in cats, cocaine- and amphetamine regulated transcript was also colocalized with KP (23%) and NKB (7%). In contrast with reports from mice, KP neurons did not express galanin in either carnivore. KP neurons innervated virtually all GnRH neurons in both species. Results of this anatomical study on OVX animals reveal species-specific features of canine and feline mediobasal hypothalamic KP neurons. Anatomical and neurochemical similarities to and differences from the homologous KP cells of more extensively studied rodent, domestic and primate species will enhance our understanding of obligate and facultative players in the molecular mechanisms underlying pulsatile GnRH/LH secretion.

9.
EMBO J ; 39(19): e104633, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32761635

RESUMO

Hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH), the "master molecule" regulating reproduction and fertility, migrate from their birthplace in the nose to their destination using a system of guidance cues, which include the semaphorins and their receptors, the neuropilins and plexins, among others. Here, we show that selectively deleting neuropilin-1 in new GnRH neurons enhances their survival and migration, resulting in excess neurons in the hypothalamus and in their unusual accumulation in the accessory olfactory bulb, as well as an acceleration of mature patterns of activity. In female mice, these alterations result in early prepubertal weight gain, premature attraction to male odors, and precocious puberty. Our findings suggest that rather than being influenced by peripheral energy state, GnRH neurons themselves, through neuropilin-semaphorin signaling, might engineer the timing of puberty by regulating peripheral adiposity and behavioral switches, thus acting as a bridge between the reproductive and metabolic axes.


Assuntos
Regulação da Expressão Gênica , Hormônio Liberador de Gonadotropina/metabolismo , Neurônios/metabolismo , Neuropilina-1/biossíntese , Comportamento Sexual Animal , Maturidade Sexual , Aumento de Peso , Animais , Feminino , Hormônio Liberador de Gonadotropina/genética , Masculino , Camundongos , Camundongos Transgênicos , Neuropilina-1/genética
10.
Obesity (Silver Spring) ; 27(6): 950-956, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31006983

RESUMO

OBJECTIVE: A minipig model was employed to explore the changes in endogenous leptin transport into the central nervous system and in hypothalamic sensitivity to exogenous leptin when individuals are placed on high-fat diet (HFD) compared with standard diet. METHODS: Serum and cerebrospinal fluid (CSF) leptin concentrations during 10 weeks of HFD versus standard diet and exogenous leptin-induced STAT3 phosphorylation in the hypothalamus of minipigs were assessed, and the hypothalamic leptin-sensitive cells were characterized by immunofluorescence. RESULTS: The efficiency of the passage of endogenous blood-borne leptin into the CSF (measured as the log [CSF:serum leptin ratio]) decreased over time in minipigs fed a HFD (ß = -0.04 ± 0.005 per kilogram of weight gain in HFD; P < 0.0001), while it remained stable in minipigs fed a standard diet. However, the ability of peripherally administered leptin to activate its receptor in hypothalamic neurons was preserved in obese minipigs at 10 weeks of HFD. CONCLUSIONS: Together, these data are consistent with the existence of an early-onset tranport deficiency for endogenous circulating leptin into the brain in individuals developing obesity, preceding the acquisition of hypothalamic leptin resistance. Although additional studies are required to identify the underlying mechanisms, our study paves the way for the development of new preclinical pharmacological models targeting the restoration of the shuttling of peripheral leptin into the central nervous system to manage obesity.


Assuntos
Líquido Cefalorraquidiano/química , Dieta Hiperlipídica/efeitos adversos , Leptina/metabolismo , Obesidade/sangue , Animais , Humanos , Masculino , Suínos , Porco Miniatura
11.
Endocr Rev ; 39(3): 333-368, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29351662

RESUMO

The fertility and survival of an individual rely on the ability of the periphery to promptly, effectively, and reproducibly communicate with brain neural networks that control reproduction, food intake, and energy homeostasis. Tanycytes, a specialized glial cell type lining the wall of the third ventricle in the median eminence of the hypothalamus, appear to act as the linchpin of these processes by dynamically controlling the secretion of neuropeptides into the portal vasculature by hypothalamic neurons and regulating blood-brain and blood-cerebrospinal fluid exchanges, both processes that depend on the ability of these cells to adapt their morphology to the physiological state of the individual. In addition to their barrier properties, tanycytes possess the ability to sense blood glucose levels, and play a fundamental and active role in shuttling circulating metabolic signals to hypothalamic neurons that control food intake. Moreover, accumulating data suggest that, in keeping with their putative descent from radial glial cells, tanycytes are endowed with neural stem cell properties and may respond to dietary or reproductive cues by modulating hypothalamic neurogenesis. Tanycytes could thus constitute the missing link in the loop connecting behavior, hormonal changes, signal transduction, central neuronal activation and, finally, behavior again. In this article, we will examine these recent advances in the understanding of tanycytic plasticity and function in the hypothalamus and the underlying molecular mechanisms. We will also discuss the putative involvement and therapeutic potential of hypothalamic tanycytes in metabolic and fertility disorders.


Assuntos
Barreira Hematoencefálica/fisiologia , Metabolismo Energético/fisiologia , Células Ependimogliais/fisiologia , Hipotálamo/fisiologia , Reprodução/fisiologia , Animais , Humanos
12.
Front Neurosci ; 10: 109, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27065780

RESUMO

Hypothalamic neurohormones are released in a pulsatile manner. The mechanisms of this pulsatility remain poorly understood and several hypotheses are available, depending upon the neuroendocrine system considered. Among these systems, hypothalamo-neurohypophyseal magnocellular neurons have been early-considered models, as they typically display an electrical activity consisting of bursts of action potentials that is optimal for the release of boluses of the neurohormones oxytocin and vasopressin. The cellular mechanisms underlying this bursting behavior have been studied in vitro, using either acute slices of the adult hypothalamus, or organotypic cultures of neonatal hypothalamic tissue. We have recently proposed, from experiments in organotypic cultures, that specific central pattern generator networks, upstream of magnocellular neurons, determine their bursting activity. Here, we have tested whether a similar hypothesis can be derived from in vitro experiments in acute slices of the adult hypothalamus. To this aim we have screened our electrophysiological recordings of the magnocellular neurons, previously obtained from acute slices, with an analysis of autocorrelation of action potentials to detect a rhythmic drive as we recently did for organotypic cultures. This confirmed that the bursting behavior of magnocellular neurons is governed by central pattern generator networks whose rhythmic drive, and thus probably integrity, is however less satisfactorily preserved in the acute slices from adult brains.

13.
Front Neurosci ; 9: 29, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25713511

RESUMO

Hypothalamic peptidergic neurons using kisspeptin (KP) and its co-transmitters for communication are critically involved in the regulation of mammalian reproduction and puberty. This article provides an overview of neuropeptides present in KP neurons, with a focus on the human species. Immunohistochemical studies reveal that large subsets of human KP neurons synthesize neurokinin B, as also shown in laboratory animals. In contrast, dynorphin described in KP neurons of rodents and sheep is found rarely in KP cells of human males and postmenopausal females. Similarly, galanin is detectable in mouse, but not human, KP cells, whereas substance P, cocaine- and amphetamine-regulated transcript and proenkephalin-derived opioids are expressed in varying subsets of KP neurons in humans, but not reported in ARC of other species. Human KP neurons do not contain neurotensin, cholecystokinin, proopiomelanocortin-derivatives, agouti-related protein, neuropeptide Y, somatostatin or tyrosine hydroxylase (dopamine). These data identify the possible co-transmitters of human KP cells. Neurochemical properties distinct from those of laboratory species indicate that humans use considerably different neurotransmitter mechanisms to regulate fertility.

14.
Neuroendocrinology ; 100(2-3): 141-52, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25247878

RESUMO

Neuronal populations that synthesize kisspeptin (KP), neurokinin B (NKB) and substance P (SP) in the hypothalamic infundibular nucleus of humans are partly overlapping. These cells are important upstream regulators of gonadotropin-releasing hormone (GnRH) neurosecretion. Homologous neurons in laboratory animals are thought to modulate episodic GnRH secretion primarily via influencing KP receptors on the hypophysiotropic fiber projections of GnRH neurons. To explore the structural basis of this putative axo-axonal communication in humans, we analyzed the anatomical relationship of KP-immunoreactive (IR), NKB-IR and SP-IR axon plexuses with hypophysiotropic GnRH fiber projections. Immunohistochemical studies were carried out on histological samples from postmenopausal women. The neuropeptide-IR axons innervated densely the portal capillary network in the postinfundibular eminence. Subsets of the fibers formed descending tracts in the infundibular stalk, some reaching the neurohypophysis. KP-IR, NKB-IR and SP-IR plexuses intermingled, and established occasional contacts, with hypophysiotropic GnRH fibers in the postinfundibular eminence and through their lengthy course while descending within the infundibular stalk. Triple-immunofluorescent studies also revealed considerable overlap between the KP, NKB and SP signals in individual fibers, providing evidence that these peptidergic projections arise from neurons of the mediobasal hypothalamus. These neuroanatomical observations indicate that the hypophysiotropic projections of human GnRH neurons in the postinfundibular eminence and the descending GnRH tract coursing through the infundibular stalk to the neurohypophysis are exposed to neurotransmitters/neuropeptides released by dense KP-IR, NKB-IR and SP-IR fiber plexuses. Localization and characterization of axonal neuropeptide receptors will be required to clarify the putative autocrine and paracrine interactions in these anatomical regions.


Assuntos
Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Hipófise/metabolismo , Substância P/metabolismo , Idoso , Idoso de 80 Anos ou mais , Axônios/metabolismo , Feminino , Humanos , Hipotálamo/citologia , Imuno-Histoquímica , Pessoa de Meia-Idade , Neurônios/citologia , Neurônios/metabolismo , Hipófise/citologia , Pós-Menopausa/metabolismo
15.
PLoS One ; 9(8): e103977, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25084101

RESUMO

Kisspeptin (KP)- and neurokinin B (NKB)- synthesizing neurons of the hypothalamic arcuate nucleus play a pivotal role in the regulation of pulsatile gonadotropin-releasing hormone (GnRH) secretion. Unlike in rodents and sheep, the homologous KP and NKB neurons in the human infundibular region rarely express dynorphin- but often exhibit Substance P (SP) immunoreactivity, indicating remarkable species differences in the neurochemical phenotype of these neurons. In search for additional neuropeptides in human KP and NKB neurons, we carried out immunofluorescent studies on hypothalamic sections obtained from five postmenopausal women. Colocalization experiments provided evidence for the presence of cocaine- and amphetamine-regulated transcript (CART) in 47.9 ± 6.6% of KP-immunoreactive (IR) and 30.0 ± 4.9% of NKB-IR perikarya and in 17.0 ± 2.3% of KP-IR and 6.2 ± 2.0% of NKB-IR axon varicosities. All three neuropeptides were present in 33.3 ± 4.9% of KP-IR and 28.2 ± 4.6% of NKB-IR somata, respectively, whereas triple-labeling showed lower incidences in KP-IR (14.3 ± 1.8%) and NKB-IR (5.9 ± 2.0%) axon varicosities. CART-IR KP and NKB neurons established contacts with other peptidergic cells, including GnRH-IR neurons and also sent projections to the infundibular stalk. KP and NKB fibers with CART often contained SP as well, while being distinct from CART fibers co-containing the orexigenic peptide agouti-related protein. Presence of CART in human, but not rodent, KP and NKB neurons represents a new example of species differences in the neuropeptide repertoire of mediobasal hypothalamic KP and NKB neurons. Target cells, receptor sites and physiological significance of CART in the efferent communication of KP and NKB neurons in primates require clarification.


Assuntos
Kisspeptinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neurocinina B/metabolismo , Hipófise/metabolismo , Idoso , Idoso de 80 Anos ou mais , Proteína Relacionada com Agouti/metabolismo , Axônios/metabolismo , Feminino , Imunofluorescência , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Pessoa de Meia-Idade , Transporte Proteico , Substância P/metabolismo
16.
PLoS Biol ; 12(3): e1001808, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24618750

RESUMO

Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.


Assuntos
Encéfalo/metabolismo , Células Endoteliais/metabolismo , Fertilidade/fisiologia , Neuropilina-1/fisiologia , Semaforina-3A/metabolismo , Animais , Axônios/metabolismo , Axônios/ultraestrutura , Ciclo Estral/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Hormônio Liberador de Gonadotropina/fisiologia , Ligantes , Hormônio Luteinizante/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Neuropilina-1/metabolismo , Ratos , Ratos Sprague-Dawley , Semaforina-3A/genética , Semaforina-3A/fisiologia , Transdução de Sinais
17.
Nat Commun ; 5: 3285, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24518793

RESUMO

The pituitary gland releases hormones in a pulsatile fashion guaranteeing signalling efficiency. The determinants of pulsatility are poorly circumscribed. Here we show in magnocellular hypothalamo-neurohypophyseal oxytocin (OT) neurons that the bursting activity underlying the neurohormonal pulses necessary for parturition and the milk-ejection reflex is entirely driven by a female-specific central pattern generator (CPG). Surprisingly, this CPG is active in both male and female neonates, but is inactivated in males after the first week of life. CPG activity can be restored in males by orchidectomy or silenced in females by exogenous testosterone. This steroid effect is aromatase and caspase dependent, and is mediated via oestrogen receptor-α. This indicates the apoptosis of the CPG network during hypothalamic sexual differentiation, explaining why OT neurons do not burst in adult males. This supports the view that stereotypic neuroendocrine pulsatility is governed by CPGs, some of which are subjected to gender-specific perinatal programming.


Assuntos
Aromatase/metabolismo , Caspases/metabolismo , Geradores de Padrão Central/metabolismo , Receptor alfa de Estrogênio/metabolismo , Hipotálamo/metabolismo , Neurônios/metabolismo , Ocitocina/metabolismo , Hipófise/metabolismo , Testosterona/metabolismo , Animais , Animais Recém-Nascidos , Apoptose , Aromatase/efeitos dos fármacos , Geradores de Padrão Central/efeitos dos fármacos , Geradores de Padrão Central/fisiologia , Receptor alfa de Estrogênio/efeitos dos fármacos , Feminino , Hipotálamo/efeitos dos fármacos , Masculino , Neurônios/fisiologia , Ocitocina/efeitos dos fármacos , Hipófise/efeitos dos fármacos , Ratos , Reprodução , Diferenciação Sexual , Testosterona/farmacologia
18.
PLoS One ; 8(8): e72369, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23977290

RESUMO

Neurons synthesizing neurokinin B (NKB) and kisspeptin (KP) in the hypothalamic arcuate nucleus represent important upstream regulators of pulsatile gonadotropin-releasing hormone (GnRH) neurosecretion. In search of neuropeptides co-expressed in analogous neurons of the human infundibular nucleus (Inf), we have carried out immunohistochemical studies of the tachykinin peptide Substance P (SP) in autopsy samples from men (21-78 years) and postmenopausal (53-83 years) women. Significantly higher numbers of SP-immunoreactive (IR) neurons and darker labeling were observed in the Inf of postmenopausal women than in age-matched men. Triple-immunofluorescent studies localized SP immunoreactivity to considerable subsets of KP-IR and NKB-IR axons and perikarya in the infundibular region. In postmenopausal women, 25.1% of NKB-IR and 30.6% of KP-IR perikarya contained SP and 16.5% of all immunolabeled cell bodies were triple-labeled. Triple-, double- and single-labeled SP-IR axons innervated densely the portal capillaries of the infundibular stalk. In quadruple-labeled sections, these axons formed occasional contacts with GnRH-IR axons. Presence of SP in NKB and KP neurons increases the functional complexity of the putative pulse generator network. First, it is possible that SP modulates the effects of KP and NKB in axo-somatic and axo-dendritic afferents to GnRH neurons. Intrinsic SP may also affect the activity and/or neuropeptide release of NKB and KP neurons via autocrine/paracrine actions. In the infundibular stalk, SP may influence the KP and NKB secretory output via additional autocrine/paracrine mechanisms or regulate GnRH neurosecretion directly. Finally, possible co-release of SP with KP and NKB into the portal circulation could underlie further actions on adenohypophysial gonadotrophs.


Assuntos
Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Substância P/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Núcleo Arqueado do Hipotálamo/citologia , Axônios/metabolismo , Capilares/metabolismo , Corpo Celular/metabolismo , Feminino , Imunofluorescência , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Kisspeptinas/análise , Masculino , Pessoa de Meia-Idade , Neurocinina B/análise , Hipófise/irrigação sanguínea , Hipófise/metabolismo , Transporte Proteico , Substância P/análise , Adulto Jovem
19.
Endocrinology ; 153(11): 5428-39, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23011920

RESUMO

Peptidergic neurons synthesizing kisspeptin (KP) and neurokinin B (NKB) in the hypothalamic infundibular nucleus have been implicated in negative sex steroid feedback to GnRH neurons. In laboratory rodents, testosterone decreases KP and NKB expression in this region. In the present study, we addressed the hypothesis that the weakening of this inhibitory testosterone feedback in elderly men coincides with enhanced KP and NKB signaling in the infundibular nucleus. This central hypothesis was tested in a series of immunohistochemical studies on hypothalamic sections of male human individuals that were divided into arbitrary "young" (21-49 yr, n = 11) and "aged" (50-67 yr, n = 9) groups. Quantitative immunohistochemical experiments established that the regional densities of NKB-immunoreactive (IR) perikarya and fibers, and the incidence of afferent contacts they formed onto GnRH neurons, exceeded several times those of the KP-IR elements. Robust aging-dependent enhancements were identified in the regional densities of KP-IR perikarya and fibers and the incidence of afferent contacts they established onto GnRH neurons. The abundance of NKB-IR perikarya, fibers, and axonal appositions to GnRH neurons also increased with age, albeit to lower extents. In dual-immunofluorescent studies, the incidence of KP-IR NKB perikarya increased from 36% in young to 68% in aged men. Collectively, these immunohistochemical data suggest an aging-related robust enhancement in central KP signaling and a moderate enhancement in central NKB signaling. These changes are compatible with a reduced testosterone negative feedback to KP and NKB neurons. The heavier KP and NKB inputs to GnRH neurons in aged, compared with young, men may play a role in the enhanced central stimulation of the reproductive axis. It requires clarification to what extent the enhanced KP and NKB signaling upstream from GnRH neurons is an adaptive response to hypogonadism or, alternatively, a consequence of a decline in the androgen sensitivity of KP and NKB neurons.


Assuntos
Envelhecimento/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Neurocinina B/metabolismo , Neurônios/metabolismo , Transdução de Sinais/fisiologia , Adulto , Idoso , Axônios/metabolismo , Hormônio Liberador de Gonadotropina/metabolismo , Humanos , Hipotálamo/metabolismo , Masculino , Pessoa de Meia-Idade , Testosterona/metabolismo
20.
J Neurosci ; 32(33): 11486-94, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22895731

RESUMO

It is increasingly accepted that alterations of the early life environment may have lasting impacts on physiological functions. In particular, epidemiological and animal studies have indicated that changes in growth and nutrition during childhood and adolescence can impair reproductive function. However, the precise biological mechanisms that underlie these programming effects of neonatal nutrition on reproduction are still poorly understood. Here, we used a mouse model of divergent litter size to investigate the effects of early postnatal overnutrition and undernutrition on the maturation of hypothalamic circuits involved in reproductive function. Neonatally undernourished females display attenuated postnatal growth associated with delayed puberty and defective development of axonal projections from the arcuate nucleus to the preoptic region. These alterations persist into adulthood and specifically affect the organization of neural projections containing kisspeptin, a key neuropeptide involved in pubertal activation and fertility. Neonatal overfeeding also perturbs the development of neural projections from the arcuate nucleus to the preoptic region, but it does not result in alterations in kisspeptin projections. These studies indicate that alterations in the early nutritional environment cause lasting and deleterious effects on the organization of neural circuits involved in the control of reproduction, and that these changes are associated with lifelong functional perturbations.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Hipotálamo/citologia , Rede Nervosa/fisiologia , Neurônios/fisiologia , Estado Nutricional/fisiologia , Reprodução/fisiologia , Fatores Etários , Animais , Animais Recém-Nascidos , Peso Corporal , Mapeamento Encefálico , Feminino , Hormônio Liberador de Gonadotropina/metabolismo , Hipotálamo/crescimento & desenvolvimento , Kisspeptinas/metabolismo , Tamanho da Ninhada de Vivíparos , Hormônio Luteinizante/metabolismo , Masculino , Desnutrição/metabolismo , Desnutrição/patologia , Camundongos , Fibras Nervosas/fisiologia , Neurocinina B/metabolismo , Neurônios/metabolismo , Ovariectomia , Hipernutrição/metabolismo , Hipernutrição/patologia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA